Enhancing Temperature and Rainfall Prediction Accuracy Through Deep Learning Frameworks

Authors

  • Mohammad Sohel Kabir Author
  • Abdullah Al Naseeh Chowdhury Author
  • Mozibur Rahman Author
  • Md. Rasel Author
  • Md Muhasin Ali Author

DOI:

https://doi.org/10.70715/jitcai.2025.v2.i2.018

Keywords:

Artificial Intelligence, Deep Learning, Temperature, Rainfall, Climate Forecasting

Abstract

The information of accurate forecasting on temperature, rainfall is also very crucial for disaster preparedness, as well for climate management. Typical statistical and machine learning approaches have limited ability to capture nonlinear and spatiotemporally varying structure of climate fields. This research utilized recent state-of-the-art deep learning models to improve the prediction models for both temperature and rainfall. The hybrid Convolutional Neural Networks and Long Short-Term Memory (CNN–LSTM) method achieved the best results (R² = 0.98 for temperature, 0.91 for rainfall), outperforming those of Multiple Linear Regression (MLR) and Random Forest (RF) as a traditional model. The Physics-Informed Neural Network (PINN) model delivered physically consistent and stable predictions, especially under extreme weather such as heavy rainfall or heatwaves. Relative humidity, atmospheric pressure and sea surface temperature were found as most important predictors-base on feature importance analysis. The regional analysis remained that the coastal region performed best, whereas the hilly region with the high topographical complexity presented a relatively lower accuracy. In general, embedding deep learning into physical constraints ended up improving a lot both correctness and robustness of predictions. Further work should be carried out to improve interpretability, inclusiveness of data and transferability in space of such models with the ambition to build a more sustainable real-time weather forecasting system.

Downloads

Download data is not yet available.

References

[1] Abebaw, S. E. (2025). A Global Review of the Impacts of Climate Change and Variability on Agricultural Productivity and Farmers’ Adaptation Strategies. Food Science & Nutrition, 13(5), e70260. https://doi.org/10.1002/fsn3.70260 DOI: https://doi.org/10.1002/fsn3.70260

[2] Ange-Clement Akazan, Abebe Geletu W. Selassie, & Nteutse, P. K. (2022). Deep Learning Methods for Weather Prediction. https://doi.org/10.13140/RG.2.2.35900.62083

[3] Bolan, S., Padhye, L. P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., Amarasiri, D., Hou, D., Zhou, P., Biswal, B. K., Balasubramanian, R., Wang, H., Siddique, K. H. M., Rinklebe, J., Kirkham, M. B., & Bolan, N. (2024). Impacts of climate change on the fate of contaminants through extreme weather events. Science of The Total Environment, 909, 168388. https://doi.org/10.1016/j.scitotenv.2023.168388 DOI: https://doi.org/10.1016/j.scitotenv.2023.168388

[4] Choi, S., Jung, I., Kim, H., Na, J., & Lee, J. M. (2022). Physics-informed deep learning for data-driven solutions of computational fluid dynamics. Korean Journal of Chemical Engineering, 39(3), 515–528. https://doi.org/10.1007/s11814-021-0979-x DOI: https://doi.org/10.1007/s11814-021-0979-x

[5] Chowdhury, Md. A., Hasan, Md. K., & Islam, S. L. U. (2022). Climate change adaptation in Bangladesh: Current practices, challenges and the way forward. The Journal of Climate Change and Health, 6, 100108. https://doi.org/10.1016/j.joclim.2021.100108 DOI: https://doi.org/10.1016/j.joclim.2021.100108

[6] Ebi, K. L., Vanos, J., Baldwin, J. W., Bell, J. E., Hondula, D. M., Errett, N. A., Hayes, K., Reid, C. E., Saha, S., Spector, J., & Berry, P. (2021). Extreme Weather and Climate Change: Population Health and Health System Implications. Annual Review of Public Health, 42(1), 293–315. https://doi.org/10.1146/annurev-publhealth-012420-105026 DOI: https://doi.org/10.1146/annurev-publhealth-012420-105026

[7] Figueredo, M. B., Ferreira, M. D. J., Monteiro, R. L. S., Silva, A. D. N., Murari, T. B., & Neri, T. D. S. (2025). Hybrid PINN-LSTM Model for River Temperature Prediction: A Physics-Informed Deep Learning Approach. Journal of Computer and Communications, 13(06), 115–134. https://doi.org/10.4236/jcc.2025.136008 DOI: https://doi.org/10.4236/jcc.2025.136008

[8] Gong, Y., Zhang, Y., Wang, F., & Lee, C.-H. (2024). Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2410.14963 DOI: https://doi.org/10.54254/2755-2721/99/20251758

[9] Hassan, Md. M., Nag, A., Biswas, R., Ali, M. S., Zaman, S., Bairagi, A. K., & Kaushal, C. (2025). Explainable artificial intelligence for natural language processing: A survey. Data & Knowledge Engineering, 160, 102470. https://doi.org/10.1016/j.datak.2025.102470 DOI: https://doi.org/10.1016/j.datak.2025.102470

[10] Hossain, S. S., Cui, Y., Delin, H., & Zhang, X. (2023). The economic influence of climate change on Bangladesh agriculture: Application of a dynamic computable general equilibrium model. International Journal of Climate Change Strategies and Management, 15(3), 353–370. https://doi.org/10.1108/IJCCSM-10-2021-0123 DOI: https://doi.org/10.1108/IJCCSM-10-2021-0123

[11] Kang, J., Wang, H., Yuan, F., Wang, Z., Huang, J., & Qiu, T. (2020). Prediction of Precipitation Based on Recurrent Neural Networks in Jingdezhen, Jiangxi Province, China. Atmosphere, 11(3), 246. https://doi.org/10.3390/atmos11030246 DOI: https://doi.org/10.3390/atmos11030246

[12] Kashinath, K., Mustafa, M., Albert, A., Wu, J.-L., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli, K., Wang, R., Chattopadhyay, A., Singh, A., Manepalli, A., Chirila, D., Yu, R., Walters, R., White, B., Xiao, H., Tchelepi, H. A., Marcus, P., Anandkumar, A., … Prabhat. (2021). Physics-informed machine learning: Case studies for weather and climate modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194), 20200093. https://doi.org/10.1098/rsta.2020.0093 DOI: https://doi.org/10.1098/rsta.2020.0093

[13] Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005–6022. https://doi.org/10.5194/hess-22-6005-2018 DOI: https://doi.org/10.5194/hess-22-6005-2018

[14] Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., & Battaglia, P. (2022). GraphCast: Learning skillful medium-range global weather forecasting (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2212.12794 DOI: https://doi.org/10.1126/science.adi2336

[15] Li, H., Zhang, C., Chu, W., Shen, D., & Li, R. (2024). A process-driven deep learning hydrological model for daily rainfall-runoff simulation. Journal of Hydrology, 637, 131434. https://doi.org/10.1016/j.jhydrol.2024.131434 DOI: https://doi.org/10.1016/j.jhydrol.2024.131434

[16] Li, X., Xu, W., Ren, M., Jiang, Y., & Fu, G. (2022). Hybrid CNN-LSTM models for river flow prediction. Water Supply, 22(5), 4902–4919. https://doi.org/10.2166/ws.2022.170 DOI: https://doi.org/10.2166/ws.2022.170

[17] Loi, C. L., Wu, C., & Liang, Y. (2024). Prediction of Tropical Cyclogenesis Based on Machine Learning Methods and Its SHAP Interpretation. Journal of Advances in Modeling Earth Systems, 16(3), e2023MS003637. https://doi.org/10.1029/2023MS003637 DOI: https://doi.org/10.1029/2023MS003637

[18] Mayer, M. J., Yang, D., & Szintai, B. (2023). Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME. Applied Energy, 352, 121958. https://doi.org/10.1016/j.apenergy.2023.121958 DOI: https://doi.org/10.1016/j.apenergy.2023.121958

[19] Naeem, H., & Bin-Salem, A. A. (2021). A CNN-LSTM network with multi-level feature extraction-based approach for automated detection of coronavirus from CT scan and X-ray images. Applied Soft Computing, 113, 107918. https://doi.org/10.1016/j.asoc.2021.107918 DOI: https://doi.org/10.1016/j.asoc.2021.107918

[20] Nooni, I. K., Ogou, F. K., Saidou Chaibou, A. A., Fianko, S. K., Atta-Darkwa, T., & Prempeh, N. A. (2025). Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics. Atmosphere, 16(7), 828. https://doi.org/10.3390/atmos16070828 DOI: https://doi.org/10.3390/atmos16070828

[21] O’Donncha, F., Hu, Y., Palmes, P., Burke, M., Filgueira, R., & Grant, J. (2022). A spatio-temporal LSTM model to forecast across multiple temporal and spatial scales. Ecological Informatics, 69, 101687. https://doi.org/10.1016/j.ecoinf.2022.101687 DOI: https://doi.org/10.1016/j.ecoinf.2022.101687

[22] Olawade, D. B., Wada, O. Z., Ige, A. O., Egbewole, B. I., Olojo, A., & Oladapo, B. I. (2024). Artificial intelligence in environmental monitoring: Advancements, challenges, and future directions. Hygiene and Environmental Health Advances, 12, 100114. https://doi.org/10.1016/j.heha.2024.100114 DOI: https://doi.org/10.1016/j.heha.2024.100114

[23] Pan, B., Yu, H., Cheng, H., Du, S., Cai, S., Zhao, M., Du, J., & Xie, F. (2023). A CNN–LSTM Machine-Learning Method for Estimating Particulate Organic Carbon from Remote Sensing in Lakes. Sustainability, 15(17), 13043. https://doi.org/10.3390/su151713043 DOI: https://doi.org/10.3390/su151713043

[24] Pan, Z., Xu, L., & Chen, N. (2025). Combining graph neural network and convolutional LSTM network for multistep soil moisture spatiotemporal prediction. Journal of Hydrology, 651, 132572. https://doi.org/10.1016/j.jhydrol.2024.132572 DOI: https://doi.org/10.1016/j.jhydrol.2024.132572

[25] Patakchi Yousefi, K., & Kollet, S. (2023). Deep learning of model- and reanalysis-based precipitation and pressure mismatches over Europe. Frontiers in Water, 5, 1178114. https://doi.org/10.3389/frwa.2023.1178114 DOI: https://doi.org/10.3389/frwa.2023.1178114

[26] Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., & Anandkumar, A. (2022). FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2202.11214 DOI: https://doi.org/10.1145/3592979.3593412

[27] Pereira, S., Canhoto, P., & Salgado, R. (2024). Development and assessment of artificial neural network models for direct normal solar irradiance forecasting using operational numerical weather prediction data. Energy and AI, 15, 100314. https://doi.org/10.1016/j.egyai.2023.100314 DOI: https://doi.org/10.1016/j.egyai.2023.100314

[28] Piran, Md. J., Wang, X., Kim, H. J., & Kwon, H. H. (2024). Precipitation nowcasting using transformer-based generative models and transfer learning for improved disaster preparedness. International Journal of Applied Earth Observation and Geoinformation, 132, 103962. https://doi.org/10.1016/j.jag.2024.103962 DOI: https://doi.org/10.1016/j.jag.2024.103962

[29] Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., & Wang, X. (2021). Deep Learning-Based Weather Prediction: A Survey. Big Data Research, 23, 100178. https://doi.org/10.1016/j.bdr.2020.100178 DOI: https://doi.org/10.1016/j.bdr.2020.100178

[30] Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., Mozaffari, A., & Stadtler, S. (2021). Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194), 20200097. https://doi.org/10.1098/rsta.2020.0097 DOI: https://doi.org/10.1098/rsta.2020.0097

[31] Sham, F. A. F., El-Shafie, A., Jaafar, W. Z. W., S, A., Sherif, M., & Ahmed, A. N. (2025). Advances in AI-based rainfall forecasting: A comprehensive review of past, present, and future directions with intelligent data fusion and climate change models. Results in Engineering, 27, 105774. https://doi.org/10.1016/j.rineng.2025.105774 DOI: https://doi.org/10.1016/j.rineng.2025.105774

[32] Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., & Woo, W. (2015). Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1506.04214

[33] Tayebi, M., & El Kafhali, S. (2025). Performance analysis of recurrent neural networks for intrusion detection systems in Industrial-Internet of Things. Franklin Open, 12, 100310. https://doi.org/10.1016/j.fraope.2025.100310 DOI: https://doi.org/10.1016/j.fraope.2025.100310

[34] Tsirtsakis, P., Zacharis, G., Maraslidis, G. S., & Fragulis, G. F. (2025). Deep learning for object recognition: A comprehensive review of models and algorithms. International Journal of Cognitive Computing in Engineering, 6, 298–312. https://doi.org/10.1016/j.ijcce.2025.01.004 DOI: https://doi.org/10.1016/j.ijcce.2025.01.004

[35] Upadhyay, A. B., Shah, S. R., & Thakker, R. A. (2025). Advanced rainfall nowcasting using 3D convolutional LSTM networks on satellite data. Journal of Computational Mathematics and Data Science, 16, 100125. https://doi.org/10.1016/j.jcmds.2025.100125 DOI: https://doi.org/10.1016/j.jcmds.2025.100125

[36] Wang, W., Tian, W., Hu, X., Hong, Y., Chai, F., & Xu, D. (2024). DTTR: Encoding and decoding monthly runoff prediction model based on deep temporal attention convolution and multimodal fusion. Journal of Hydrology, 643, 131996. https://doi.org/10.1016/j.jhydrol.2024.131996 DOI: https://doi.org/10.1016/j.jhydrol.2024.131996

[37] Waqas, M., & Humphries, U. W. (2024). A critical review of RNN and LSTM variants in hydrological time series predictions. MethodsX, 13, 102946. https://doi.org/10.1016/j.mex.2024.102946 DOI: https://doi.org/10.1016/j.mex.2024.102946

[38] Waqas, M., Humphries, U. W., Chueasa, B., & Wangwongchai, A. (2025). Artificial intelligence and numerical weather prediction models: A technical survey. Natural Hazards Research, 5(2), 306–320. https://doi.org/10.1016/j.nhres.2024.11.004 DOI: https://doi.org/10.1016/j.nhres.2024.11.004

[39] Xing, D., Wang, Y., Sun, P., Huang, H., & Lin, E. (2023). A CNN-LSTM-att hybrid model for classification and evaluation of growth status under drought and heat stress in chinese fir (Cunninghamia lanceolata). Plant Methods, 19(1), 66. https://doi.org/10.1186/s13007-023-01044-8 DOI: https://doi.org/10.1186/s13007-023-01044-8

[40] Zhang, H., Liu, Y., Zhang, C., & Li, N. (2025). Machine Learning Methods for Weather Forecasting: A Survey. Atmosphere, 16(1), 82. https://doi.org/10.3390/atmos16010082 DOI: https://doi.org/10.3390/atmos16010082

[41] Zheng, G., Li, X., Zhang, R.-H., & Liu, B. (2020). Purely satellite data–driven deep learning forecast of complicated tropical instability waves. Science Advances, 6(29), eaba1482. https://doi.org/10.1126/sciadv.aba1482 DOI: https://doi.org/10.1126/sciadv.aba1482

Published

11/03/2025

How to Cite

Mohammad Sohel Kabir, Abdullah Al Naseeh Chowdhury, Mozibur Rahman, Md. Rasel, & Md Muhasin Ali. (2025). Enhancing Temperature and Rainfall Prediction Accuracy Through Deep Learning Frameworks. Journal of Information Technology, Cybersecurity, and Artificial Intelligence, 2(2), 119-132. https://doi.org/10.70715/jitcai.2025.v2.i2.018

Share