Machine Learning in Assessing the Impact of Climate Change on Water Resources
DOI:
https://doi.org/10.70715/jitcai.2025.v2.i2.015Keywords:
Climate Change, Groundwater, Machine Learning for IoT, River Flow, Water ResourcesAbstract
The water resources of Bangladesh are highly susceptible to climate change which is reflected in patterns of river flows, groundwater and water quality. This work uses a machine learning (ML) approach to quantify the changes induced in representative river basins under historical and future SSP2-4.5 and SSP5-8.5 scenarios. Historical climate monitoring also indicated significant regional warming, especially in the coastal region (+0.25 °C/decade) and growing spatial heterogeneities of rainfall. Future projections under SSP5-8.5 suggest dramatic changes, such as a +4.1 °C temperature increase and a 13.5% change in rainfall by the end of the century. Comparing different ML models for predicting streamflow, Long Short-Term Memory (LSTM) model proved to be the best, with an accuracy and the fewest errors. The increase in mean annual streamflow in the Ganges, Brahmaputra, and Meghna basins is substantial under the LSTM projections and the Meghna basin could witness as high as 21% increase under SSP5-8.5. These transformations align with a significant increase in the frequency of extreme floods, that might extend to yearly events before the century is over. Groundwater is estimated to decrease drastically, and water quality is likely to deteriorate, with coastal salinity increasing by almost 100%. Spatial vulnerability diagnosis indicates that the South-West and coastal zones are severely vulnerable due to both water scarcity and salinity encroachment. A region-specific adaptation plan for sustainable groundwater management needs to be developed, with an advanced plan for enhancing the resilience of Bangladesh’s groundwater resources under future climate scenarios.
Downloads
References
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6 DOI: https://doi.org/10.1007/s11356-022-19718-6
Ahmed, A. A., Sayed, S., Abdoulhalik, A., Moutari, S., & Oyedele, L. (2024). Applications of machine learning to water resources management: A review of present status and future opportunities. Journal of Cleaner Production, 441, 140715. https://doi.org/10.1016/j.jclepro.2024.140715 DOI: https://doi.org/10.1016/j.jclepro.2024.140715
Bamal, A., Uddin, M. G., & Olbert, A. I. (2024). Harnessing machine learning for assessing climate change influences on groundwater resources: A comprehensive review. Heliyon, 10(17), e37073. https://doi.org/10.1016/j.heliyon.2024.e37073 DOI: https://doi.org/10.1016/j.heliyon.2024.e37073
Basher, Md. A., Stiller-Reeve, M. A., Saiful Islam, A. K. M., & Bremer, S. (2018). Assessing climatic trends of extreme rainfall indices over northeast Bangladesh. Theoretical and Applied Climatology, 134(1–2), 441–452. https://doi.org/10.1007/s00704-017-2285-4 DOI: https://doi.org/10.1007/s00704-017-2285-4
Bhattacharjee, A., Hassan, S. M. Q., Hazra, P., Kormoker, T., Islam, S., Alam, E., Islam, M. K., & Towfiqul Islam, A. R. Md. (2023). Future changes of summer monsoon rainfall and temperature over Bangladesh using 27 CMIP6 models. Geocarto International, 38(1), 2285342. https://doi.org/10.1080/10106049.2023.2285342 DOI: https://doi.org/10.1080/10106049.2023.2285342
Bhuiyan, Md. M. H., Dey, K. N., Saha, P., Sarker, P. K., Md. Halimuzzaman, & Biswas, Md. T. (2025). Exploring the role of artificial intelligence in transforming HR practices. International Journal of Business Management and Economic Review, 08(01), 98–110. https://doi.org/10.35409/IJBMER.2025.3646 DOI: https://doi.org/10.35409/IJBMER.2025.3646
Bhuyan, Md. I., Mia, S., Supit, I., & Ludwig, F. (2023). Spatio-temporal variability in soil and water salinity in the south-central coast of Bangladesh. CATENA, 222, 106786. https://doi.org/10.1016/j.catena.2022.106786 DOI: https://doi.org/10.1016/j.catena.2022.106786
Bosompemaa, P., Brookfield, A., Zipper, S., & Hill, M. C. (2025). Using national hydrologic models to obtain regional climate change impacts on streamflow basins with unrepresented processes. Environmental Modelling & Software, 183, 106234. https://doi.org/10.1016/j.envsoft.2024.106234 DOI: https://doi.org/10.1016/j.envsoft.2024.106234
Botero-Acosta, A., Ficklin, D. L., Ehsani, N., & Knouft, J. H. (2022). Climate induced changes in streamflow and water temperature in basins across the Atlantic Coast of the United States: An opportunity for nature-based regional management. Journal of Hydrology: Regional Studies, 44, 101202. https://doi.org/10.1016/j.ejrh.2022.101202 DOI: https://doi.org/10.1016/j.ejrh.2022.101202
Douaioui, K., Oucheikh, R., Benmoussa, O., & Mabrouki, C. (2024). Machine Learning and Deep Learning Models for Demand Forecasting in Supply Chain Management: A Critical Review. Applied System Innovation, 7(5), 93. https://doi.org/10.3390/asi7050093 DOI: https://doi.org/10.3390/asi7050093
Elmotawakkil, A., Moumane, A., Youssef, A. A., & Enneya, N. (2025). Machine Learning and Remote Sensing for Modeling Groundwater Storage Variability in Semi-Arid Regions. Intelligent Geoengineering, S3050619025000254. https://doi.org/10.1016/j.ige.2025.08.001 DOI: https://doi.org/10.1016/j.ige.2025.08.001
Ghobadi, F., & Kang, D. (2023). Application of Machine Learning in Water Resources Management: A Systematic Literature Review. Water, 15(4), 620. https://doi.org/10.3390/w15040620 DOI: https://doi.org/10.3390/w15040620
Halimuzzaman, M., Wafik, H. M. A., Chakrabortty, P. K., & Mahbub, S. (2024). Public Relation and Educational Outcomes of Films in Bangladesh: A Study on Hawa. Journal of Primeasia, 5(1), 1–7. https://doi.org/10.25163/primeasia.519834 DOI: https://doi.org/10.25163/primeasia.519834
Hossain, Md., Roy, K., & Datta, D. (2014). Spatial and Temporal Variability of Rainfall over the South-West Coast of Bangladesh. Climate, 2(2), 28–46. https://doi.org/10.3390/cli2020028 DOI: https://doi.org/10.3390/cli2020028
Hughes, A., Mansour, M., Ward, R., Kieboom, N., Allen, S., Seccombe, D., Charlton, M., & Prudhomme, C. (2021). The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. Journal of Hydrology, 598, 126336. https://doi.org/10.1016/j.jhydrol.2021.126336 DOI: https://doi.org/10.1016/j.jhydrol.2021.126336
Jihan, Md. A. T., Popy, S., Kayes, S., Rasul, G., Maowa, A. S., & Rahman, Md. M. (2025). Climate change scenario in Bangladesh: Historical data analysis and future projection based on CMIP6 model. Scientific Reports, 15(1), 7856. https://doi.org/10.1038/s41598-024-81250-z DOI: https://doi.org/10.1038/s41598-024-81250-z
Kabir, Md. A., Hossain, Md. K., Hossain, Md. A., Molla, M. O. F., Khatun, Most. S., & Mostofa Jamal, M. A. H. (2024). Impact of Water and Soil Salinity on Coastal Agriculture in Bangladesh: Insights and Mitigation Strategies. American Journal of Multidisciplinary Research and Innovation, 3(4), 36–48. https://doi.org/10.54536/ajmri.v3i4.2927 DOI: https://doi.org/10.54536/ajmri.v3i4.2927
Khan, M., Khan, A. U., Khan, S., & Khan, F. A. (2023). Assessing the impacts of climate change on streamflow dynamics: A machine learning perspective. Water Science & Technology, 88(9), 2309–2331. https://doi.org/10.2166/wst.2023.340 DOI: https://doi.org/10.2166/wst.2023.340
Leščešen, I., Tanhapour, M., Pekárová, P., Miklánek, P., & Bajtek, Z. (2025). Long Short-Term Memory (LSTM) Networks for Accurate River Flow Forecasting: A Case Study on the Morava River Basin (Serbia). Water, 17(6), 907. https://doi.org/10.3390/w17060907 DOI: https://doi.org/10.3390/w17060907
Lokman, A., Ismail, W. Z. W., & Aziz, N. A. A. (2025). A Review of Water Quality Forecasting and Classification Using Machine Learning Models and Statistical Analysis. Water, 17(15), 2243. https://doi.org/10.3390/w17152243 DOI: https://doi.org/10.3390/w17152243
Luo, J., Zhu, D., & Li, D. (2025). Classification-enhanced LSTM model for predicting river water levels. Journal of Hydrology, 650, 132535. https://doi.org/10.1016/j.jhydrol.2024.132535 DOI: https://doi.org/10.1016/j.jhydrol.2024.132535
Luo, Y., Ficklin, D. L., Liu, X., & Zhang, M. (2013). Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of The Total Environment, 450–451, 72–82. https://doi.org/10.1016/j.scitotenv.2013.02.004 DOI: https://doi.org/10.1016/j.scitotenv.2013.02.004
Lyimo, N. N., Fue, K. G., Materu, S. F., Kilatu, N. C., & Telemala, J. P. (2025). Assessing the potential for application of machine learning in predicting weather-sensitive waterborne diseases in selected districts of Tanzania. Frontiers in Artificial Intelligence, 8, 1597727. https://doi.org/10.3389/frai.2025.1597727 DOI: https://doi.org/10.3389/frai.2025.1597727
MacAlister, C., & Subramanyam, N. (2018). Climate change and adaptive water management: Innovative solutions from the global South. Water International, 43(2), 133–144. https://doi.org/10.1080/02508060.2018.1444307 DOI: https://doi.org/10.1080/02508060.2018.1444307
Mamoon, W. B., Jahan, N., Abdullah, F., & Rahman, A. (2024). Modeling the Impact of Climate Change on Streamflow in the Meghna River Basin: An Analysis Using SWAT and CMIP6 Scenarios. Water, 16(8), 1117. https://doi.org/10.3390/w16081117 DOI: https://doi.org/10.3390/w16081117
Martínez Pérez, J., García-Galiano, S., Martin-Gorriz, B., & Baille, A. (2017). Satellite-Based Method for Estimating the Spatial Distribution of Crop Evapotranspiration: Sensitivity to the Priestley-Taylor Coefficient. Remote Sensing, 9(6), 611. https://doi.org/10.3390/rs9060611 DOI: https://doi.org/10.3390/rs9060611
Martinez-Cruz, T. E., Adelman, L., Castañeda-Quintana, L., & Mejía-Montalvo, D. (2024). Water is more than a resource: Indigenous Peoples and the right to water. Social Sciences & Humanities Open, 10, 100978. https://doi.org/10.1016/j.ssaho.2024.100978 DOI: https://doi.org/10.1016/j.ssaho.2024.100978
Mauro, F., Rich, B., Muriga, V. W., Sebastianelli, A., & Ullo, S. L. (2023). SEN2DWATER: A Novel Multispectral and Multitemporal Dataset and Deep Learning Benchmark for Water Resources Analysis (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2301.07452 DOI: https://doi.org/10.1109/IGARSS52108.2023.10282352
Monir, Md. M., Sarker, S. C., & Islam, Md. N. (2024). Assessing the changing trends of groundwater level with spatiotemporal scale at the northern part of Bangladesh integrating the MAKESENS and ARIMA models. Modeling Earth Systems and Environment, 10(1), 443–464. https://doi.org/10.1007/s40808-023-01794-3 DOI: https://doi.org/10.1007/s40808-023-01794-3
Nguyen, T.-T.-H., Vu, D.-Q., Mai, S. T., & Dang, T. D. (2023). Streamflow Prediction in the Mekong River Basin Using Deep Neural Networks. IEEE Access, 11, 97930–97943. https://doi.org/10.1109/ACCESS.2023.3301153 DOI: https://doi.org/10.1109/ACCESS.2023.3301153
Nimma, D., Devi, O. R., Laishram, B., Ramesh, J. V. N., Boddupalli, S., Ayyasamy, R., Tirth, V., & Arabil, A. (2025). Implications of climate change on freshwater ecosystems and their biodiversity. Desalination and Water Treatment, 321, 100889. https://doi.org/10.1016/j.dwt.2024.100889 DOI: https://doi.org/10.1016/j.dwt.2024.100889
Pizzorni, M., Innocenti, A., & Tollin, N. (2024). Droughts and floods in a changing climate and implications for multi-hazard urban planning: A review. City and Environment Interactions, 24, 100169. https://doi.org/10.1016/j.cacint.2024.100169 DOI: https://doi.org/10.1016/j.cacint.2024.100169
Rahman, A., & Sohul Am, J. H. (2015). Regional Variation of Temperature and Rainfall in Bangladesh: Estimation of Trend. Journal of Applied & Computational Mathematics, 04(05). https://doi.org/10.4172/2168-9679.1000245 DOI: https://doi.org/10.4172/2168-9679.1000245
Rahman, M. M., Thompson, J. R., & Flower, R. J. (2020). Hydrological impacts of climate change on rice cultivated riparian wetlands in the Upper Meghna River Basin (Bangladesh and India). Hydrological Sciences Journal, 65(1), 33–56. https://doi.org/10.1080/02626667.2019.1676427 DOI: https://doi.org/10.1080/02626667.2019.1676427
Rahman, S., & Rahman, M. A. (2015). Climate extremes and challenges to infrastructure development in coastal cities in Bangladesh. Weather and Climate Extremes, 7, 96–108. https://doi.org/10.1016/j.wace.2014.07.004 DOI: https://doi.org/10.1016/j.wace.2014.07.004
Rojek, I., Mikołajewski, D., Andryszczyk, M., Bednarek, T., & Tyburek, K. (2025). Leveraging Machine Learning in Next-Generation Climate Change Adaptation Efforts by Increasing Renewable Energy Integration and Efficiency. Energies, 18(13), 3315. https://doi.org/10.3390/en18133315 DOI: https://doi.org/10.3390/en18133315
Saha, A., & Chandra Pal, S. (2024). Application of machine learning and emerging remote sensing techniques in hydrology: A state-of-the-art review and current research trends. Journal of Hydrology, 632, 130907. https://doi.org/10.1016/j.jhydrol.2024.130907 DOI: https://doi.org/10.1016/j.jhydrol.2024.130907
Saleh, Md. A., Rasel, H. M., & Ray, B. (2024). From data to decisions: Leveraging ML for improved river discharge forecasting in Bangladesh. Watershed Ecology and the Environment, 6, 209–226. https://doi.org/10.1016/j.wsee.2024.09.004 DOI: https://doi.org/10.1016/j.wsee.2024.09.004
Salinas-Camus, M., Goebel, K., & Eleftheroglou, N. (2025). A comprehensive review and evaluation framework for data-driven prognostics: Uncertainty, robustness, interpretability, and feasibility. Mechanical Systems and Signal Processing, 237, 113015. https://doi.org/10.1016/j.ymssp.2025.113015 DOI: https://doi.org/10.1016/j.ymssp.2025.113015
Sapitang, M., Dullah, H., Latif, S. D., Ng, J. L., Huang, Y. F., Malek, M. B. A., Elshafie, A., & Ahmed, A. N. (2024). Application of integrated artificial intelligence geographical information system in managing water resources: A review. Remote Sensing Applications: Society and Environment, 35, 101236. https://doi.org/10.1016/j.rsase.2024.101236 DOI: https://doi.org/10.1016/j.rsase.2024.101236
Uc-Castillo, J. L., Marín-Celestino, A. E., Martínez-Cruz, D. A., Tuxpan-Vargas, J., & Ramos-Leal, J. A. (2023). A systematic review and meta-analysis of groundwater level forecasting with machine learning techniques: Current status and future directions. Environmental Modelling & Software, 168, 105788. https://doi.org/10.1016/j.envsoft.2023.105788 DOI: https://doi.org/10.1016/j.envsoft.2023.105788
Xu, Q., Shi, Y., Bamber, J., Tuo, Y., Ludwig, R., & Zhu, X. X. (2023). Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology (Version 5). arXiv. https://doi.org/10.48550/ARXIV.2310.05227
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kazi Rumanuzzaman, Mst Sanjida Alam, Akram Hossain, Sheikh Urvana Akter Mim, Md Maheadi Hasan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.





